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Do children bump
time optimally?

PHOTO COURTESY OF:

ANDY RUINA

drive the oscillator. Other forms
of locomotion such as rowing,
swimming, and jumping have also
been studied. For example, [7]
deals with the optimization of
muscle coordination for maxi-
mal-height jumping.
Models of the human
body, such as those used in
[6] and [7] to study walk-
ing and jumping, are typi-
cally based on a collection
of appendages and joints.
The complexity of these mod-
els often precludes analytical
solutions to optimal control
problems, thus necessitating
numerical methods. In some
cases, however, low-order mod-
els are sufficient. For example, a
rider pumping a playground
swing can be modeled adequately
as a second-order system.

esearch in biome-
chanics supports
the idea that
humans perform
skilled tasks as
self-optimizing
machines [1]-[4]. According-
ly, human motion can be
viewed as a control prob-
lem entailing the mini-
mization of a cost function
with constraints on the
control inputs and state
variables. These constraints
include magnitude bounds on the
control inputs corresponding to
the maximum forces and moments
that the muscles can apply, as well
as bounds on the state variables cor-
responding to the maximum displace-
ments and rotations permitted by the
joints and muscles. While these con-
straints can be determined by experimen-
tal and analytical means, researchers often
disagree over the cost function [5].

Human locomotion, in particular walking
and running, has been widely studied. The
walking frequency is predicted in [6] by assum-
ing a driven harmonic oscillator model for the
lower body while minimizing the energy required to

Swing Pumping
Pumping a swing is a classical
problem that has been widely
studied. Various pumping strategies
such as standing [8] and sitting [9]
have been considered. The rider has
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been modeled as a point mass [10],
as a rigid body with a moment of
inertia [11], and as an assembly of
linked dumbbells [12]. In this article,
we focus our attention on the prob-
lem of time-optimal pumping of a
swing, where the rider pumps the
swing by alternately standing and
squatting.

Figure 1, which is a composite
image created from photos taken at
equal time intervals, depicts pump-
ing by standing and squatting. As
the figure shows, the child is squat-
ting as she approaches the midpoint

of the swing’s motion, and she
stands up near the midpoint. The
child then travels toward the high-
est point while standing, and returns
to the squatting position in the
vicinity of the highest point. On the
return journey, the child is again
squatting while approaching the
midpoint, and stands up near the
midpoint, thus repeating the process. A look around the
neighborhood playground reveals that children playing
on swings generally follow the same strategy. In this
article, we show that if the transitions to standing and
squatting occur instantaneously, then this pumping
strategy is time optimal (Figure 2).

Equations of Motion
The rider-and-swing system is modeled as a pendulum with a
bob of mass m attached to a fixed support by a rope of vari-
able length /(). The rope is taken to be massless, and the
angle of the rope with respect to the vertical is denoted by
0(t) (Figure 3). Let [} and [_, satisfying 0 < [_ < [, denote
the maximum and minimum lengths of the pendulum corre-
sponding to squatting and standing, respectively. Let
L £ (1/2)(L; + [_) be the mean length of the pendulum. Dis-
sipative forces such as bearing friction and wind drag are
ignored. The length of the pendulum is the control input for
the system.

Conservation of angular momentum for the pendulum gives

dH

— =,
dt

where H £ mi26 is the angular momentum of the pendu-
lum about the fixed support, and  is the net torque about
the fixed support due to all of the forces acting on the pen-
dulum bob. The torque about the fixed support due to the
tension I' in the rope is zero, while the torque due to the
gravitational force is —mgl(t) sin6(t). Therefore,
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Figure 1. An entire oscillation of a child pumping a swing. (a) The child at the
start of the oscillation, (b) squatting and moving toward the midpoint of the trajec-
tory, (c) beginning to stand up as she reaches the midpoint, and (d) and (e) stand-
ing up and moving toward the highest point. (f) She is at the highest point, and (g)
on the return journey she is in a squatting position. (h) She is beginning to stand
up, and (i) she is standing. (k) She reaches the highest point. The change in the
amplitude of oscillation can be seen by comparing (a) and (k). The frames were
taken 4/15th of a second apart. (Photos courtesy of Prof. Andy Ruina.)

Figure 2. Pumping strategy with instantaneous transitions
from standing to squatting and vice versa. The 6 o’clock figure
shows the rider at the lowest point of the swing’s trajectory
transitioning from a squatting position (dotted red) to a
standing position (solid black). (Figure modified from [4].)

%(12(09'(0) = —gl(t) sin6(?). ¢))
Hence,
é+2$+g5iln0 =0, )

where the dependence of [ and 6 on ¢t has been dropped.
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Periodic Length Variation

The optimal control problem considered in this article
assumes that the length of the pendulum can be
changed instantaneously. In practice, however, the
motion of the rider results in a continuous change in the
length of the pendulum, and as Figure 1 suggests, the
motion can be idealized by sinusoidal motion. To ana-
lyze swing pumping when the length of the pendulum
varies sinusoidally, define v £ Jp [13] and use sinf ~ 6
for small @ in (2) to obtain

mg sin 6(t) |
o ‘. mg cos 6(t)

mg

Figure 3. Geomelry and free-body diagram of a pendulum
with a bob of mass m attached to a fixed support by a mass-
less rope of length I(t). mg is the gravitational force on the
bob, T is the tension in the rope, and the angle of the rope
with respect to the vertical is (7).
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Figure 4. Solution of Mathieu’s equation for § = 1/4,

e = 0.1, and L = 10. The solution to Mathieu’s equation is
unbounded for certain values of the parameters. The figure
depicts the case in which the frequency of variation of the
pendulum’s length is twice the pendulum ’s natural frequency.
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b+ %(g—'i)v =0.

Rescaling time by substituting f £ ot and letting the
length of the pendulum vary as I(t) = L(1 + e cos wi),
wheree = (I, — [/l + 1) < 1, yields

, b&+ecost
1+ecost

where ()/ denotes d()/df and § £ g/(La)z). As a first-order
approximation in ¢ we obtain Mathieu’s equation

V' + 8 +e(d—68)cosHv =0.

Mathieu’s equation appears in different mathematical and
engineering contexts, and its properties have been studied
in detail [14]. For certain values of § and e, the solution to
this equation is unbounded. One such solution for s =1/4
and € = 0.1 is shown in Figure 4. For § = 1/4, the frequency
of variation of the length of the pendulum is twice the
pendulum’s natural frequency /g/L. In fact, the rider in
Figure 1 also completes two oscillations of the standing
and squatting motion for every oscillation of the swing.

Instantaneous Variation of the Length
While thus far the length [(f) of the pendulum has been
taken to be a continuous function of time, optimal control
theory allows [(f) to be piecewise continuous. Following
the discussion in [15], we use physical reasoning and ele-
mentary calculus to build intuition about swing pumping
when [(¢) varies instantaneously.

Assume the rider in Figure 1 is initially squatting and mov-
ing toward the midpoint of the trajectory, corresponding to
9 = 0. Let t, denote the time corresponding to Figure 1(b) at
which the rider is squatting and approaching the midpoint,
and let fy + At denote the later time instant corresponding
to Figure 1(d) at which the rider is standing and traveling
away from the midpoint. Let & be such that |0(f)| < ¢ for
t € [ty, to + At]. Using the fact that the change in angular
momentum is obtained by integrating the torque with
respect to time, we have

fh+At

lz—éstand = Iiésquat = "f gl(t) sin6(¢) dt, 3)

to

where ésquat and 6gang are the angular velocities before
and after standing, respectively. Since |siné(f)| < ¢ for
t € [to, to + At], the right-hand side of (3) is O(¢), and as
¢ — 0 we have

August 2005



. bt
Ostand = (Tt) 03quat~ 4)

Since [; > [, the angular velocity of the rider increases
by this action and the rider attains a larger amplitude of
oscillation. The rider thus increases the amplitude of
oscillation by switching from squatting to standing at the
midpoint of the motion. To impart this increment in the
angular velocity repeatedly, the rider must return to the
squatting position at another point along the motion, ide-
ally without affecting the velocity or the angle.

Consider the point § ~ 0 in the swing’s motion, corre-
sponding to the highest point in the rider’s path. Suppose
the rider is standing at time f;while moving toward the
highest point [Figure 1(e)] and returns to the squatting
position at time #; + Af while moving away from the high-
est point [Figure 1(g)]. Let ¢ > 0 satisfy [0(1)| < ¢ for
t € [t1. t1 + At]. Since the difference in the magnitude of 6
before and after squatting does not differ by more than
2¢, the angular velocity remains unaffected by this transi-
tion in the limit that the transition is carried out instanta-
neously at the highest point of the motion, that is, as
¢ — 0. Furthermore, intuition suggests that if the transi-
tion is instantaneous, then the angle also remains unaf-
fected. To verify this observation, we integrate (1) from
to t, where t < t; + At, obtaining

t
B®é) — 26(t) = — / gl(t) sin6(t) dt. (5)
b

Dividing by 2(¢) and integrating from # to t; + At yields

2 .
) 0(ty)dt

Hh+At [_
o(t At —0(f) — —
(t + AD) —6(ty) /;1 (I(t)

n+at _q gt :
:/t, 72(7)];1 gl(¢)sinf(¢) d¢ dt. (6)

In the limit of instantaneous transition so that the angular
velocity is zero, that is, ¢ — 0 and At — 0 simultaneously,
the integrals in (5) and (6) tend to zero. The angle is thus
unaffected during the transition.

By standing and squatting at appropriate times during
the motion, it follows from (4) that the rider increases the
amplitude of oscillation of the swing. When the process is
carried out in reverse, by standing at the highest point
and squatting at the lowest point of the swing’s trajecto-
ry, the amplitude of oscillation of the pendulum is
decreased. The amplitude of oscillation can thus be
increased or decreased by suitably altering the length of
the pendulum.
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Energy Considerations

The pumping strategy described previously and shown in
Figure 2 leads to a geometric increase in the mechanical
energy of the system [8]. In this strategy, the rider does
the most work on the swing per oscillation, since the rider
stands up at the lowest point, in the presence of the maxi-
mal gravitational and centrifugal forces, and squats at the
highest point, where the centrifugal force vanishes and
the component of the gravitational force along the length
of the swing reaches its minimum. Since the work done on
the swing is converted into stored energy, an increase in
the mechanical energy of the system results in a corre-
sponding increase in the amplitude of oscillation.

To demonstrate the geometric increase in the mechani-
cal energy, consider the situation in which the rider under-
goes motion whose amplitude of oscillation and maximum
speed are given by Omax and Umax, respectively. The total
energy E of the system is thus given by

1
= vaxznax = mgl; (1 — coS Omax)-

Suppose that the rider approaches the midpoint of the tra-
jectory while squatting and stands up instantaneously at
9 = 0. The work W done on the swing is

2
W= (mg+ mumax> Al,
Ly

where Al £ [, —[_. The new total energy E’ of the system
is given by

E/=E+W=mgAl+E(1+2lA—l>.
+

Let Omax be the amplitude of oscillation corresponding to
energy E’. The work W’ done by the rider at the top of the
swing’s motion in returning to the squatting position is

W' = —mgAl cos Oy,
The total energy of the system E” is then given by

E’/=E’+W’%E(1+3IA—1),
+

where higher powers of (Al)/(l+) have been ignored. Since
this process is carried out twice per oscillation, the total
energy Ej, at the end of n oscillations is
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2n
Ly

Thus, energy considerations show that the amplitude of
oscillation of the swing can be increased by suitably
changing the swing’s length. Similarly, by interchanging
the standing and squatting positions, the energy of the sys-
tem can be reduced.

Optimal Control: Linearized Case

In this section, we analyze swing pumping as an optimal
control problem. We begin by substituting z; =6 and
29 = 6 in (2) to obtain

Human motion can be viewed as a control
problem entailing the minimization of a
cost function with constraints on the
control inputs and state variables.

Z1i—420,
2izy gsinz

LR ] ©)

Note that the derivative / of the control input / appears
in (7). Therefore, [ is impulsive when / is discontinuous, and
the state zo changes instantaneously. That is, as seen from
(4), a discontinuous control input causes a discontinuity in
the angular velocity. To remove the explicit appearance of
the impulse, define x5 = 25/ (the angular momentum) and
X1 = 21 [16] to obtain the nonimpulsive system [17]

i1 iy
X1 = 1—2,
X9 = —glsinx;. 8)

Substituting  {(t) = L(1 + eu(t)) in.. i(8),.  where
e=(y—1)/U++1-) <1 and |u(®)| <1, the first-order
approximation in € is

: Xo  2euxy
Ty Bl T

X9 = —gLsinx; — gleusinx;. ()]

The squatting position with length [, corresponds to
u = +1, and the standing position with length /_corresponds
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to u = —1. Linearizing about the origin and setting L = 1 and
g = 1 without any loss of generality, we obtain

5(1 i 0 1 X1 0 2 X1
[5(2}—[—1 0] [xz] u[e O i
Rewriting in matrix form, we have the bilinear system [18], [19]

X = Ax + uBx. (11)

The controllability criterion for bilinear systems given in
[19] shows that it is not possible to drive (11) from every
initial state to every prescribed terminal state in finite time.
For example, the state cannot be
moved away from the origin, since the
origin is a fixed point of the system.
The physical implication is that a push
is needed to start swinging. However,
a push is not admissible in our prob-
lem definition. Also, it can be shown
[19] that the origin cannot be reached
in finite time by bounded controls.
With these points in mind, we thus
consider the problem of bringing the
system (11) from an initial nonzero
angle and zero angular velocity Xini = [X1, 0]" to a target cir-
cle centered about the origin in minimum time. The control
input is bounded in magnitude such that |u(f)| < 1.

The Pontryagin Minimum Principle
Having obtained the equations of motion and formulated
the time-optimal control problem, we now derive the solu-
tion using optimal control theory [20]-[30]. Let x*(¢) be
the trajectory of (11) corresponding to the time-optimal
control u*(t). Let p be the radius of the target circle cen-
tered about the origin. The optimal trajectory x*(f) satis-
fies the boundary conditions, x*(0) =[x, 0]T and
x*(T*) € S, where S = {x: ||x|]| = p} and T* is the optimal
time to reach S. The Hamiltonian H is defined by

Hx(0), pt), u(t)) 2 1+ pT(O[ Ax(8) + u(t) Bx(0)].

Then there exists a nontrivial costate vector p*(f) such that
e The differential equations

x 3 by aH % * X

X0 = 3 x*(0), p* (), u” (D), 12)
; oH

Pt = —E;(X*(t),P*(t),u*(t)), 13)

are satisfied by the state and the costate vectors with
boundary conditions x*(0) = [, 0] and x*(T*) € S.
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em—

e The Hamiltonian is minimized by the optimal control
input u*(¢) for all ¢ € [0, T*], that is,

HE&X (O, p*), u* (b)) = 'ur(ltl)ilg 3 H* (0, p* (0, u(®). (14)

e The Hamiltonian for the optimal control input is
zero, that is, for all ¢ € [0, T*],

H& (@), p* (), u*(t) = 0. (15)

¢ The costate vector p*(T™) is transverse to S, that is,
for x € M[x*(T™")],

p*T(T")[x — x*(TH)] =0, (16)

where M[x*(T*)] is the tangent plane of S at x*(T*),
as shown in Figure 5.

Bang-Bang Control

Using (14), the optimal control is given by
u* (f) = sgn[2p](t)x; (1) + p3(Ox] ()] 17)

Since the argument of the sgn function vanishes only at
isolated points, the optimal control is bang-bang, that is, u
is piecewise constant and assumes the values +1 and —1.

State and Costate Vectors

It follows from (12) that x*(¢) satisfies

xt 0 1— 2t [x
= y (18)
Xo (et 0 x5

with the initial condition x*(0) = [, 0]T, where u* is a
piecewise constant function taking the values of +1 and
—1. Rewriting (18) as

(0 + X} () =0,

where » £ /1 — eu* — 2¢2u*2, we obtain

X[ (t) = Xq cos wt,

2 sinot. (19)

X017 3 T =2t

Let us now turn our attention to the costate vector. From
(13) we have
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P 0 1+ eu* 2
= g (20)
P —(1 — 2¢u*) 0 P

and (15) implies
1 +x5(0p] ) (1 — 2eu™) — x5 (OP5(O(1 +eu™) =0.  (21)
It follows from (20) and (21) that

1
pi(t) = — cos(wt + ¢),
X1

pi(t) = 5 sint +9), (22)

"X +eu

where ¢ is a parameter that is chosen based on the initial
and final conditions of the optimal control problem.

Solving the Time-Optimal

Control Problem

We now determine ¢ in (22) so that equations for the state
and costate vectors satisfy all of the necessary conditions
for optimality. Since the target set S is a circle, it follows
from the transversality condition (16) that at the final time
T*, the state and costate vector are parallel to each other
(Figure 5). Therefore,

pH(T*) = Ax*(T"),

Tangent Plane

p*(T")

bed )

Target Circle S

Figure 5. Transversality condition. At the terminal time T*
the costate vector p*(T*) is transverse to the tangent plane of
Siabxt(E)s
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and thus

piTY  p3(T*)

PG e S T

(23)

when xj(T™) and x5(T*) are nonzero.

Substituting (19) and (22) in (23) and using € < 1, we
obtain sing = 0. It can be shown that sin¢g =0 when
either x7(T*) or x5(T*) is zero. Therefore, either ¢ = 2nw
or ¢ = (2n+ 1), where n=0,1,2.... When the swing
must be pumped to increase its amplitude of motion,
substituting ¢ = (2n + 1)z in (22) and using (17) and
(19) we have

back form, and (24) corresponds to the pumping strategy
shown in Figure 2, where the rider stands up at the lowest
point and squats at the highest point.

Optimal Control: Nonlinear Case

To solve the time-optimal control problem for the nonlinear
system (8), we use techniques from geometric optimal con-
trol [24]. Replacing [ by u as the control input in (8), we have

X2

x=h(x,u) 2 u? ; (26)

—gu sinx

where x £ [t x9]T and

with [_ <u(t) < l4.
The main difficulty

........ Standing
—— Squatting

in analyzing (26) is
the nonlinear depen-
dence on the control
input. However, defin-
ing h*(x) = h(x, l1.), we
observe that the set of
admissible velocities at

-------- Standing
—— Squatting

X2 H X2

a point x is contained
in the convex hull of
the vectors 0, h™ (x),
and At (x), as shown in
Figure 7. Therefore,
every admissible veloc-

X ity at x for (26) is real-
(b) ized with a greater
magnitude by a point

Figure 6. Time-optimal trajectories for the linearized system (10). Time-optimal trajectories are
shown when the amplitude of oscillations is (a) decreased and (b) increased. The coordinate
axes are the switching curves on which the control input switches between +1 and —1. The squat-
ting position corresponds to u = +1, while the standing position corresponds to u = —1.

u* (1) =sgn[2p1 (Dx2() + p2(Hx1(D)]

2
=sgn| ———— sinwt coswt
" [I—Zeu*

i
1+ eu*
= — sgn[x] (Ox5(D)].

sinwt cos wt:l

(24)

When the amplitude of oscillation of the swing must be
decreased, substituting ¢ = 2nx in (22) yields
u*(8) = sgn[x] ()x5(5)]. (25)

Optimal trajectories for the two cases are shown in Figure 6.
The optimal control strategies (24) and (25) are in feed-
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on the segment joining

h~(x) and AT (x), imply-

ing that points on this

segment result in faster

trajectories [25]. This
observation enables us to
solve the optimal control
problem for the nonlinear system (26) by considering an
auxiliary system with velocities in the segment joining
h~(x) and ht(x). To illustrate this idea, we introduce the
auxiliary system

x=Fx@)+Gxv, |v =<1, 27
where
C 3 bAlx
— x5 Y S
Foy= ch o I o = :
_Ebsmxl i Al sinx;
August 2005



and a2 (.1)% b2 1, +1_, and c £ 2 + 2. The auxiliary
system corresponds exactly to having velocities in the seg-
ment joining A~ (x) with ht(x), which is easily checked by ver-
ifying that F (x) + G(x) = h" (x) and F(x) — G(x) = h™ (x).

Dimension-two systems of type (27) have been studied
in [24] and [26]-[28]. For these systems, a detailed analy-
sis of the structure of optimal trajectories and a synthesis
of the optimal control is possible. A general method for
synthesizing an optimal control on a two-dimensional (2-D)
manifold is illustrated in [26], along with a classification of
various singularities that appear in optimal flows.

A key role in the analysis of optimal trajectories for (27)
is played by the functions

AA(x) £ det(F(x), G(x))
= F1(x)Ga(x) — F2(x) G1 (%),
Ap(x) £ det(G(x), [F, G](x))
= G1(0)[F, Gl2(x) — G2(0)[F, G]1(0),

where the Lie bracket [F, G] of F and G is given by
[F: Gl £ yG.F — VF - G. In particular, if neither function
vanishes in an open set Q of the phase space, then every
optimal trajectory in € is bang-bang with, at most, one
switching [24]. For (27) we compute

A 2
Ao — —g—l(Z—:—b—)xz sinxy,
AB(c+b?) (b
Ap(x) = g__;CT-Fz ((—lxg cosxy + ¢ sin2x1> :

implying only bang-bang controls for x; € [—=7/2, /2] and,
at most, one switching for every quadrant.

The link between (26) and (27) is given by the following
theorem [25].

Theorem 1
Consider two points x( and X7, denoting the prescribed ini-
tial and final states of the nonlinear system (26).

e If there exists a bang-bang time-optimal control v
steering (27) from xo to x; along trajectory y, then
there exists a time-optimal control u for (26) corre-
sponding to the same trajectory y of v, that is,
h(y (), u(t)) = F(y () + Gy @)v(®).

o If the time-optimal control v for (27) is not bang-
bang, then a time-optimal control for (26) does not
exist. In this case, let T denote the time taken by v.
Then for each ¢ > 0 there exists a control u steering
X to x¢ in time T + ¢, such that u(¢) € {{+} for every ¢.

Roughly speaking, Theorem 1 states that either a bang-

bang optimal control exists for (27) and that the same tra-
jectories are optimal for (26), or the optimal control for (27)
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is not bang-bang, in which case the optimal control for (27)
does not exist, but the minimum-time trajectory of (26) is
approximated by bang-bang trajectories. Therefore, to
obtain optimal controls for (26), it suffices to construct
time-optimal controls for (27).

Figure 8, which is constructed using the methods devel-
oped in [26], shows time-optimal trajectories for the nonlin-
ear system (26) starting from xo on the positive x;axis. The
dashed green lines indicate the switching curves for which
the control input changes sign along the optimal trajectories.
The trajectories that minimize and maximize the final oscilla-
tion correspond to bang-bang controls, with the control
input switching each time the state crosses the coordinate

»* —___Set of Admissible
Velocities

()

)

X

Figure 7. The set of admissible velocities for the nonlinear
system (26). The set of admissible velocities for the state x is a
proper subset of the convex hull of the vectors 0, h~ (x), and
h (x). The figure is constructed for the case x1 < 0 and x2 > 0.

------- Standing
——Squatting

X2

Xq

Figure 8. Time-optimal trajectories for the nonlinear system
(26). The initial point xy is on the positive x| axis. Trajecto-
ries minimizing (red) and maximizing (blue) the amplitude
of oscillation are obtained when the control input switches
between +1 and —1 as the state crosses the coordinate axes.
The dashed green lines are the switching curves.
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axes. The optimal control for the nonlinear system is identi-
cal to the solution obtained for the linearized system.

Conclusions

Children playing on a swing generally stand up at the lowest
point and squat at the highest. Under the assumption that
standing and squatting can be carried out instantaneously,
we have shown, using the Pontryagin minimum principle and
techniques from geometric optimal control, that this pump-
ing strategy is time optimal for the problem of maximizing
the amplitude of oscillation of a swing. Given the exuberant
nature of youth, it is reasonable to believe that children on a
swing try to go as high as possible as quickly as possible.
Thus, one of the key concepts in biomechanics, that humans
act as self-optimizing machines while performing skilled
tasks, is shown to hold in the case of pumping a swing.
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